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Abstract. The symmetries, especially those related to Bagansformation, of the reflection
equation (RE) for two-component systems are analysed. The classification of solutions to the RE
for eight-, six- and seven-vertex-ty@ematrices is given. All solutions can be obtained from those
corresponding to the standaRdmatrices byk -transformation. For the free-fermion models, the
boundary matrices have propertykis (0) = 0, and the free-fermion-typR-matrix with the same
symmetry as that of a Baxter type corresponds to the same forik ofmatrix for the Baxter type.

We present the Hamiltonians for the open spin systems connected with our solutions. In particular,
the boundary Hamiltonian of seven-vertex models is obtained with a generalization to the Sklyanin
formalism.

1. Introduction

In the framework of the quantum inverse scattering method (QISM) [1-5], the Yang—Baxter
equation (YBE)

R12(u) R1a(u + v) Ro3(v) = R23(v) R1z(u + v) Ria(u) (1.1)

is a sufficient condition for the integrability of systems with a periodic boundary condition
(BC). Given anR-matrix solution to YBE (1.1), we can construct the Lax operator of certain
models at a suitable representatiokofind hence transfer matrig:). The YBE ensures that
t (u) commutes with each other for different spectrum parameters. So, if we ex@gnalith
respect to the spectrum parameatethe coefficients are a set of conserved quantities which
satisfy Liouville’s criterion of integrability [6, 7].

However, when considering systems on a finite interval with independent boundary
conditions at each end, we have to introduce reflection matites:) to describe such
boundary conditions. Sklyanin assumed thatRamatrix has the following symmetries [8]:

regularity: R(0) « P;

P-symmetry: PioR1o(u) P1o = Ro1(u) = Rio(u);
T-symmetry: Ri? = Rio(u);

unitarity: R1io(u)Ro1(—u) o id;

crossing unitarity:R,(u) RSy (—u — 2n) « id,

€ Author to whom correspondence should be addressed.
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wherey is the crossing parameter aRg is the permutation matrix,, » denote transpositions

in space,V; andV,, respectively. In order that the BC are compatible with integrability, the
reflection matrices should obey so-called reflection equations (RE), or boundary Yang—Baxter
equations (BYBE) [8-10]

Rio(u — v) zé_ (u)Ro1(u +v) I%_ (v) =1§_ (v)R12(u +v) Ié_ (W) Ro1(u — v), (1.2)
1 2
Rip(—u +v) K (u)Rio(—u —v —2n) K? (v)
2 1
= K? (WRio(—u —v —2n) K (u)Rio(—u +v) (1.3)

1 2

wherek.= K+ ® 1, K+= 1® K., andR(u) satisfies YBE (1.1). So for a solutiaki_ (1)
to RE (1.2), the relation

Ki(u) =K' (—u—1n) (1.4)
gives the solution to equation (1.3). Nevertheless, notRathatrices possess the above-
mentioned properties, some generalizations should be made (see e.g. [11]). As we will see
in section 4, the seven-vertex (7V) models are also beyond Sklyanin’s formalism, for their
R-matrices do not enjo§’-symmetry. It was stated in [12] that if aRrmatrix has regularity,
unitarity and crossing unitarity symmetries, but does not leinvariance, we can propose
K. (u) to satisfy the equation:

1 2
Rio(—u +v) K+ (u)Ro1(—u —v —2n) K+ (v)

2 1
= K+ (VRw2(—u —v —2n) K+ (u)Rio(—u +v) (1.5)

and the integrability can be proved as well. There is also a relation between the solutions of
equations (1.2) and (1.5)

Ki(u) = K_(—u —n). (1.6)

We will find later that the Baxter type and free-fermion type-I solutions of 7V models are in
this case.

Due to the significance of the RE, a lot of work has been directed to the study of their
solutions [11, 13-18], and the Hamiltonians of the systems with such boundary conditions
are also constructed. However, most of those works are based @ riarices which are
derived directly from the parametrization of the statistical weight in vertex models. There in
fact exist many kinds oR-matrices according to the classification of eight-vertex (8V) and
six-vertex(6V)-type solutions of both the YBE and the coloured YBE [19-21]. It is tedious
to solve the reflection equation for eveRymatrix. Fortunately, all thos®-matrices of two-
component systems can be obtained by applying particular solution transformation to standard
(or gauge) ones [20] which satisfy certain initial conditions (let us call solution transformation
of the R-matrix asR-transformation for brevity). The word ‘two-component’ means that there
exist two states in the system: particles and antiparticles in field theory, spin up and down in a
spin system, arrow up and down or right and left in a lattice model (see [22]). After a detailed
study of the RE, we can show that there exists a corresponding transformatiorktanlagrix
(we call it K-transformation) to keep RE invariant undestransformation. Therefore, we
only need to concentrate dfo-matrices for the standam-matrices.

In this paper we shall focus our attention on solutions to reflection equations of two-
component systems up o-transformation. The solutions are divided into three cases, each of
which corresponds to 8V, 6V and 7V models and will be discussed in sections 2—4, respectively.
For each case, we first analyse the symmetries of the RE, especially those relate@to the
transformations, and then find solutions to the RE for the Baxter-type and free-fermion type
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standardrR-matrices, respectively. We put emphasis on new solutions, but for completeness,
we also give the solutions obtained by others.

In section 5, for those solutions given in previous sections, we shall construct the
corresponding local Hamiltonian of the open spin-chain. The local Hamiltonian means that it
only consists of nearest-neighbour interaction terms. A system with such a Hamiltonian can
be viewed as having coupling with magnetic field on its ends. Finally we shall argue that for all
boundary conditions to the free-fermion models, the reflection matkicés) have property
tr K+(0) = 0. This property requires us to derive the Hamiltonian from the second derivative
of the transfer matrix [16]. In section 6, we make some remarks and discussions.

2. K_-matrices to the 8V model

In this section, we shall first study the symmetries of RE and givektheansformation
corresponding to the-transformation in [20]. With these discussions, we can concentrate our
attention on the RE for the standard &/matrices, which are divided into three types: Baxter
type (or XY Z spin-chain [5]), free-fermion type | (XY model [23, 25]), and free-fermion
type Il. All K_-matrices associated with theRematrices are given.

2.1. Symmetries of reflection equation

The general 8\R-matrix and the correspondirk)_ (1) matrix are expressed in the following
forms respectively:

w1(u) 0 0 w7(u)
_ 0  w(u) ws(u) 0
RW=1"0  wsw) wsw) O @D
wg(1t) 0 0 ws(u)
_ [ a1(u) ax(u)
K(”)‘<a3(u) a4(u)>' 22

Assuming thaR («) is a solutionto YBE (1.1), then as studied in [20], there are four symmetries
for the 8V-typeR-matrix (2.1).

(R.A) Symmetry of interchanging indice#f. we exchange the elements &f(u) aswi(#) <
wa(un), wr(u) < w3(u) or ws(u) < we(u), w7(u) < wg(u), then the new matrix also
satisfies YBE (1.1).

(R.B) The scaling symmetryMultiplication of R(x) by an arbitrary functionf («) is still a
solution to YBE (1.1).

(R.C) Symmetry of spectral parametéfrwe take a new spectral parameies= Au, wherex is
a constant complex number, the new mafi¢iz) is still a solution to YBE (1.1).

(R.D) Symmetry of weight function$f. we replace weight functions;(«), wg(u) by the new
ones

@7(u) = s wr(u) (1) = swg(u) (2.3)
wheres is a non-zero complex constant, the new matrix is still a solution to YBE (1.1).

The symmetries (R.A)—(R.D) are called solution transformation®Rftransformations)
of an 8V-type solution of YBE (1.1). It is convenient for later discussion to use such notation
as follows:

wi(u —v) =u; w;i(u+v) =y

a;(u) = x; a;(v) = y;.
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Substituting the matriceR and K _ into the reflection equation (1.2), we get 16 component
equations, which are divided into groups according to symmetries of the indices:

(u7vg — UgV7)X1Y4s — UgV2X2Y2 + U7V3X3Y3 + UaV(X2Y3 — X3y2) =0

(A1)
(u7vg — Ugv7)Xay1 — UgU2X2Y2 + U7V3x3Y3 + U1U5(X2y3 — x3y2) =0
(12v3 — U3V2)X1Y4 T+ U2VgX2Y2 — U3V7X3Y3 + UsV1(X3y2 — X2y3) =0 (A2)
(12v3 — U3V2)X4Y1 T U2VgX2Y2 — U3V7X3Y3 T UsVa(X3y2 — X2y3) =0
U7VIX1Y1 — U7V4X4Y4 — ULV7X1Y4 + U4V7X4Y1 + (g — U1)V2X2Y2
+u7(vs — vg)x3y, = 0
(A3)
UgV1X1Y1 — UBVaX4Y4s — U1VgX1Y4 + UsVgXay1 + (Us — U1)V3X3Y3
+ug(vs — vg)x2ys =0
U3VeX1Y1 — U3U5X4Y4 — UgU3X1Y4 + UsV3X4Y1 + (U5 — Ug)UX2Y2
+uz(vg — v1)x3y2 =0
(A.4)
U2VeX1Y1 — U2UsX4Y4 — UeU2X1Y4 + UsU2X4y1 + (Us — Ug)U7X3Y3
+uz(vs —v)x2y3 =0
(11 — uzv2)x1y2 + (U7V8 — USVS)X4Y2 — USULIX2Y1 t UIVSX2Y4 — U3VTX3Y1
+u7v3x3ys =0
(u1v1 — upv3)x1y3 + (Ugv7 — UsV5)X4y3 — USVIX3Y1 + U1VSX3Y4 — U2VUBX2Y1
tugvoxoys = 0
(A.5)
(4v4 — uzv2)xay2 + (U7Vg — UGVE)X1Y2 — UEVAX2Y4 T U4VEX2Y1 — U3VTX3Y4
+u7vaxsyr = 0
(14v4 — uv3)x4y3 + (UgV7 — UEVE)X1Y3 — UpUaX3Y4 T U4VUEX3YL — U2V8X2Y4
+ugvpxzyr =0
UgU2X1Y2 — UIV7X1Y3 + UpUSX4Y2 — U7V4X4Y3 + (U2V1 — U1V2)X2Y1
+(upv7 — u7v)x3y1 =0
UEU3X1Y3 — U1VgX1Y2 + U2UsX4Y3 — UgVaXay2 + (U3V1 — UIV3)X3Y1
+(ugvg — ugvg)x2y1 =0
(A.6)

USV2X4Y2 — U4V7X4Y3 + UpVeX1Y2 — U7V1X1Y3 + (U2V4 — U4V2)X2Y4
+(usv7 — u7vs)x3y4 = 0
USV3X4Y3 — UsUgX4aY2 + U3VeX1Y3 — UgV1X1Y2 + (U3V4 — U4V3)X3Y4

+(usvg — ugvs)xzys = 0.

After a careful study of the above equations, we find that if one applies the following
transformations t& _ (u) under the transformations (R.A)—(R.D), the system of equations (A)
remains invariant:

(K.A) The symmetry of interchanging indic&his symmetry will be discussed for each type of
R-matrix later.

(K.B) The scalar symmetryf we multiply K_ («) by an arbitrary functiorg (), the new matrix
g(u)K_(u) is stilla solution to RE. On the other hand, all tRematrices up to an arbitrary
scalar function have the same reflection matrix.
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(K.C) The symmetry of spectral parametelfsve take a new spectral parameies Lu, where
A is any constant, the new matrik(iz) also satisfies RE foR (ir).

(K.D) The symmetry of weight functioif.applying the transformation (R.D) t&(«), we can
make a corresponding -transformation orkK _ (u):

as(u) = /saz(u)  ax(u) = /5 az(u) (2.4)

keepingai (1), a4(1) unchanged. The new _(u) matrix is also a solution to RE for the
new R-matrix.

Considering the above symmetries for the renatrix andK _-matrix, we can focus our
attention on the standa®l-matrix with the restrictions [20]

ws(u) = we(u) =1 w7(u) = ws(ut) (2.5)
and initial condition
R12(0) = Pr2. (2.6)

Note that from condition (2.5), we only need consideitransformation (R.A) of
interchanging indice®s; < w4 andw; <> w3 hereafter. AllR-matrices are classified into two
classes: Baxter type and free-fermion type, according to whether or not the elements of the
R-matrix satisfy the free-fermion condition [19, 23, 24]

w1(W)wa(u) + wp(u)wz () — ws(u)we(u) — w7(u)wg(u) = 0. (2.7)

The RE corresponding to these two kindsefmatrices has very different properties. We shall
discuss solutions to RE for these gaugyenatrices respectively.

2.2. Baxter type

The gaugeR-matrix of a Baxter type was first derived by Baxter [5], and has the following
parametrization:

w1(u) = wa(u) = sn(u + h)/snh
w2 (1) = ws3(u) = snu/snh
ws(u) = we(u) =1

w7(u) = wg(u) = ksnusn(u + h)

(2.8)

where snt, chu, dnu are Jacobi elliptic functions of moduldés It is a high-symmetric one
with w1 (1) = wa(u), w2(u) = ws3(u), so the transformation of interchanging indices (R.A)
has no effect in this case.

TheK _-matrices in this case have been widely discussedin[13—15,18]. For completeness,
we list here the main results. The most general one was given in [15, 18] as follows:

A(L—k Sr? u)+1+k Sré
K- () = ( et o MSH(ZL{)W) (2.9)
HSN(2u) S v sne +u)

whereu, v, A, a are free parameters, and the other special solutions can be obtained by setting
these parameters to take special values.
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2.3. Free-fermion type |

The R-matrix of the free-fermion type | is less symmetric than that of the Baxter type. In this
casewy(u) = ws(u), butw (1) # w4(u). The reflection equation is equivalent to five systems
of equations:

upv7(x2y2 — x3y3) + usvi(xzy2 — x2y3) =0

uv7(x2y2 — x3y3) + usva(xzyz — x2y3) = 0

(B.1)
u7v2(x2y2 — x3y3) + u1vs(xzy2 — x2y3) =0
u7v2(x2y2 — x3y3) + uavs(x3y2 — x2y3) = 0
U7VIX1Y1 — U1V7X1Y4 + U4V7X4Y1 — U7VaXaYa + (g — u1)V2x2y2 = 0 (82)
U7V1X1Y1 — ULV7X1Ya + UaV7X4Y1 — U7V4X4aYa + (s — U1)V2x3y3 = 0
uoVUs(X1y1 — X4Y4) + usv2(x4y1 — x1y4) + u2(v4 — v1)x2y3 =0 (8.3)
upUs(X1y1 — x4y4) + usva(xay1 — x1y4) + uz2(vs — vy)xzy2 = 0
USV2X1Y2 — ULV7X1Y3 + UpUsX4Y2 — U7V4X4Y3 + (U2V1 — ULV2)X2Y1

+(usv7 — u7vs)x3y1 =0
USV2X1Y3 — ULV7X1Y2 + UQUSX4Y3 — U7V4X4Y2 + (U2V1 — U1V2)X3Y1

+(usv7 — u7vs)x2y1 =0 (B.2)
USU2X4Y2 — U4V7X4Y3 + URU5X1Y2 — U7V1X1Y3 + (U2V4 — U4V2)X2 Y4

+(usv7 — u7vs)x3ys =0
USV2X4Y3 — U4VTX4Y2 + U2VsX1Y3 — U7V1X1Y2 + (U2V4 — U4V2)X3Y4

+(usv7 — u7vs)x2y4 = 0
(u1v1 — uzv2)x1y2 + (U7V7 — USVS)X4Y2 — USVIX2Y1 + UIVSX2Y4 — U2VTX3Y1

+u7v2x3ys =0
(u1v1 — upv2)x1y3 + (U7v7 — UsV5)X4Y3 — UsV1X3Y1 T UIVUSX3Y4 — URV7X2Y1

tu7vx2y4 = 0

(B.5)

(4v4 — uv2)x4y2 + (U7V7 — USVS)X1Y2 — USV4X2Y4 + UAVSX2Y1 — U2V7X3Y4
+u7vox3yr = 0

(14v4 — uv2)x4y3 + (U7V7 — USVUS)X1Y3 — USV4X3Y4 + UAVSX3Y1 — U2VU7X2Y4
+u7vox2y1 = 0.

There also exist symmetries of interchanging indices. The system of equations (B) is
invariant under the exchange @f(u) <> a4(u) andwy () <> w4(u) Or ax(u) <> az(u). The
gaugeR-matrix is [20],

w1(u) =cnu + H snudnu

wa(u) =cnu — Hsnudnu

w2(u) = w3(u) = Gsnudnu (2.10)
ws(u) = wg(u) = dnu

w7(u) = wg(u) = ksnucnu

whereG, H are arbitrary parameters with relatiéif — H? = 1. Note that in (2.10) we do
not takews(u) = wg(u) = 1 in order to compare our following discussion with other’s work.
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We will consider the generat-matrix which haso; (1) # w4(u), i.e. H # 0. The case of
H = 0is remarked at the end of this section. Now we solve the RE (B) case by case.

Case 2.3.1: diagonal solution.From (B.1),a2(u) = 0 < a3(u) = 0. There are only two
equations to be considered,

Uvs(x1y1 — X4ya) + usva(xayr — x1y4) = 0

U7V1X1Y1 — U1V7X1Y4 + U4V7X4Y1 — U7VaXaYs = 0.

Introducing a new variable (i) = a;(u)/a4(u) and solvingg (1) from the above equations,
we get a solution

(2.11)

cnudnu + ik’ snu 0 > (2.12)

K_(u) = ( 0 cnudnu F ik’ snu

wherek’ is the complementary modulus of elliptic function. Note that the diagonal solution of
8V free-fermion type | has no free parameter, which is different from that of the Baxter type.

Case 2.3.2: skew-diagonal solutionlf a»(u) # 0, we conclude from (B.1) that

ax(u) = eaz(u) € = =+1. (2.13)
Takingai(u) = 0, we get from (B.4)

x4(uzvsy2 — uzvays) = 0.

With the help of (2.13) and (2.10), the above equation calls:fz) = 0. However, this is
contradictory tazp(u) # 0 as seen from (B.2). So the skew-diagonal solution does not exist
due to less symmetry of thR-matrix.

Case 2.3.3: general solution.Becausdu; — us)ve = (v1 — v4)uz, the following equation is
obtained from (B.2), (B.3) and (2.13):
U7V1X1Y1 — ULV7X1YV4 T UAV7X4Y1 — UTVaXaY4

—e{uavs(x1y1 — X4y4) + usva(xay1 — x1ya)} = 0. (2.14)
Differentiating the above equation with respectitand settingy = 0, we can express
ai(u), as(u) as

a1(u) = (F(uw)cnudnu — G(u) snu) p(u)/2

az(u) = (F(uw)cnudnu + G(u) shu)p(u)/2

where
k(11— €kG)er + H
Fuy=c1+ (2= ekGler + Hea) srfu (2.15)
eG —k
k(1 — ek —kK%H
Ew)=c+ @=e GG)CZ . 2 srf u (2.16)
6 J—

andp(u) is a meromorphic function to be determined. Substituting the above expressions into
(B.5), we get

az(u)

pu)
and an additional restriction betweenandc, from (B.2)

k%c2 + 2 = 2u(G — €k)/ k.

= psnucnudnu
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Therefore, the most general solution is
K _( F(u)cn(u) dn(u) + E (1) sr(u) 21 sn(u) cn(u) dn(u)
~(w) = 2¢ e sn(u) cn(u) dn(u) F@)cn(w)dn(u) — E(m) sn(u) )

The resultin [17] is a specific case pf= 1. Itis also easy to find that the diagonal solution
(2.12) can be obtained by settipg= 0.

(2.17)

Remark 2.3.1. There are in fact various parametrizaions of a free-fermionic Bvhatrix,
one of which is given in [24]:
w1(u) = 1 —e(u)e(hy)e(hz)
wa(u) = e(u) — e(h1)e(hz)
w2(u) = e(hz) — e(u)e(hy)
w3(u) = e(hy) — e(u)e(h) (2.18)
ws(u) = we(u) = Ve(hy) shp)e(h) Sha) (1 - e(u))/ sn ()

u

wr() = wg(u) = —iky/e(hy) Sh1)e(hz) Sz) (1 +e(w) sn ()

whereh, andh;, are colour parameters, anelu) is the elliptic exponential:

e(u) = cn(u) +isn(u).
If we make transformation (R.B) to (2.18) with factor function

Ve(hy)e(hs) Snhysnhy 1sn:/(g)
and set
h]_:hz:/’l, u—>u/2 =i H:ﬂ
shh snh

the newR-matrix coincides with (2.10), so our solution includes the diagonal solution given
in [16].

Remark 2.3.2. Let us consider the special case 8f = 0 and G = 1. In this case, the
R-matrix is

w1(u) = wa(u) = CNu

w (1) = w3(u) = snudnu (2.19)
ws(1) = wg(u) = dnu

w7(u) = wg(u) = ksnucnu.
It has the same symmetry as the Baxter type. The calculation shows that this feature is
responsible for the fact that both tw®matrices share the sané_(u) as given in (2.9).

2.4. Free-fermion type I

This kind of R-matrix takes the form,

. __coshu)
w1(u) = wa(u) = M
wou) = —w3(u) = ‘?22(:5; (2.20)

ws(u) = ws(u) =1
w7(u) = wg(u) = tan(uu)
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where A, u are parameters. The RE in component forms is equivalent to the following 12
equations:

uov7(x2y2 + x3y3) + usv1(x3y2 — x2y3) =0

u7v2(x2y2 + x3y3) + u1vs(x3y2 — x2y3) = 0 (©1)
u7v1(x1y1 — x4y4) + u1v7(xay1 — x1y4) =0 (C2)
upVs(X1y1 — X4y4) + usva(xayr — x1y4) =0 '
USV2X1Y2 — ULV7X1Y3 + URUsX4Y2 — U7V1X4Y3 + (U2V1 — ULV2)X2Y1
+(usv7 — u7vs)x3y; =0
USV2X1y3 — ULV7X1Y2 T URUSX4y3 — U7V1X4Y2 + (U2V1 — UIV2)X3Y1
+(usv7 — u7vs)x2y1 =0 (C23)
USV2X4Y2 — ULV7X4Y3 + UpVsX1Y2 — U7V1X1Y3 + (U2V1 — UIV2)X2Y4 '
+(usv7 — u7vs)x3ys = 0
USV2X4Y3 — ULV7X4Y2 T URVUsX1Y3 — U7V1X1Y2 + (U2V1 — UIV2)X3Y4
+(usvy — u7vs)x2ys = 0
(u1v1 + uzv2)x1y2 + (U707 — UsVS)X4y2 — USVIX2Y1 + U1V5X2Y4
+uv7xzyr — u7vax3ys =0
(u1v1 +uzv2)x1y3 + (U7v7 — UsV5)X4y3 — USVIX3Y1 + UIVUSX3Y4
+upv7X2y1 — U7V2x2y4 = 0 (C.4)

(u1vy + upv2)x4y2 + (U7V7 — USV5)X1Y2 — USVIX2Y4 + ULVSX2Y1
+uUov7X3y4 — U7v2x3y1 = 0
(uv1 + upv2)xay3 + (U7v7 — UsV5)X1y3 — UsV1X3Y4 + UIVEX3YL

tuUov7X2y4 — UTV2X2Y1 = 0.

We find that under th&-transformation of interchanging (#) andws(u) in (2.20), one
can perform & -transformation as follows:

ar(u) = —ax(u) or az(u) = —az(u) (2.22)

to keep the system of equations (C) invariant.
The existence of a nhon-trivial solution implies that there exists the relation
U7v2  U1Vs
uguy  usvy
which requires. = £iu. Thus we should consider two differeRtmatrices,
w1(u) = wa(u) =1

wr(u) = —w3(u) = itanu

(2.22)
ws(u) = we(u) =1
w7(u) = ws(u) = tanu
and
w1(u) = wa(u) =1
wr (1) = —w3(u) = —itanu (2.23)

ws(u) = ws(u) =1
w7(u) = wg(u) = tanu.
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They are in fact related each other by an exchange) < w3(u). Let us give solutiork _ (u)
directly because the calculation procedure has nothing newR &orin (2.22), we have

_ u1(1 +vqysin2u) iwa(1+vycos ) sin2u
K-(u) = <M2(1— V2 COS 1) Sin 2u w1 (1 — visin2u) (2.24)
while for R(u) in (2.23), using the& -transformation (2.21), we have
_ n1(1 +vqysin2u) i2(1+ vy cos ) Sin2u
K-(u) = <—,u2(1— V2 COS 4t) Sin 2u u1(1l— vy sin2u) (2.25)
whereuy, ug, v1, v, are free parameters.
3. K_-matrix for the 6V model
The general 6\MR-matrix takes the form
w1(u) 0 0 0

0  we(w) wsu) 0
0 0 0 w4(u)

By settingu7 s = 0 andvz g = 0 in equations (A), we write down the reflection equations for
the 6V-typeR-matrix in component forms:

(a4 — u1)voxzy, =0

(D.1)
(g4 — u1)vaxzyz = 0
u1vs(x2y3 — x3y2) =0

(D.2)
uqve(x2ys — x3y2) =0
(1203 — U3vV2)x1y4 + usv1(x3y2 — x2y3) = 0

(D.3)
(1203 — uzv2)x4y1 + ugva(xzyz — x2y3) = 0
U3VeX1Y1 — U3U5X4Ya — UeVU3X1Y4 T UsV3X4Y1 + U3(vs — v1)x3y2 = 0 (D.4)
UQVeX1Y1 — UU5X4Y4 — UeVU2X1Y4 + UsV2X4y1 + U2(V4 — V1) X2y3 =0
UgU2X1y2 + UzvsX4y2 + (Upv1 — u1v2)x2y1 =0
ugU3X1y3 + u3vsxays + (uzvy — u1v3)xzyr = 0 (D.5)
UsV2X4y2 + uvex1y2 + (U2v4 — u4v2)x2y4 = 0
usvU3x4y3 + U3vex1ys + (uzvs — uav3)xzys = 0
(u1v1 — Mgvz)xlyz — U5U5X4Y2 — U5V1X2V1 + U1Us5X2y4 = O
(1v1 — U2V3)X1y3 — UsVUsX4Y3 — UsV1X3Y1 + U1UsX3Y4 = O (D.6)

(44 — U3V2)X4y2 — UEUsX1Y2 — UsV4X2Y4 + U4VsX2Y1 = O

(144 — U2V3)X4Y3 — UEVsX1Y3 — UsU4X3Y4 + U4UsX3Y1 = 0.

From [21], we know that the 6V-type solutions of YBE have the same solution-
transformation as that for 8V-type solutions except for the symmetries of weight functions
and of the interchanging indices relatedde(u) and wg(#). Now the two symmetries of
weight functions are

@2 (u) = swo(u) @3(u) = s ws(u) (3.2)
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and
ws(u) = € ws(u) we(u) = € “we(u) (3-3)

wheres, ¢ are two non-zero constants. In fact, we find that transformation (3.2) has no effect
on the system of equations (D), and if makikigtransformation

ay(u) = €"ay(u) as(u) = € “as(u) (3.4)

the newK_(u) is still a solution to RE for the newk-matrix obtained fromR-transformation
(3.3). Due to these symmetries, we will consider the gakgeatrices as in the 8V model.
They are also classified into two classes: the Baxter type

B ~sin(u+h)
w1(u) = wa(u) = “sinh
wa) = w3(u) = z:z: (3.5)

ws(u) = ws(u) =1

and the free-fermion type

_ sin(u + h)
O = =g
. sin(—u +h)
wal) = —g , (3.6)
sinu

wo(u) = w3(u) = Sn
ws(u) = we(u) = 1.

For the Baxter type, the general solution to RE was given in [13]

[ Asin(e —u)  wsin(2u)
K-(u) = < vsin(2u)  Asin(o + u)> 8.7)

which has four free parametexsa, u andv.

While for the free-fermion type, since;(u) # w4(u), one can immediately see that
az(u) = 0 andaz(u) = 0 from (D.1). In other words, the RE for the free-fermion-type 6V
model only has the diagonal solution,

_ [ sin(e —u) 0
K (u)= < 0 sin(er +u)) . (3.8)

In addition, if setting cog = 0 in (3.6), we have a symmetriR-matrix of free-fermion type
as follows,

coSu 0 0 0
0 sinu 1 0
R(u) = 0 1 sinu O (3.9)

0 0 0 COoSt

Just as discussed in remark 2.3.2, tRisnatrix shares the santé_-matrix in (3.7) with the
6V Baxter type.

So, up toK -transformation (3.4), we obtain all general solutions (3.7) and (3.8) to RE in
the 6V case.
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4. K_-matrices to the 7V model

If settingwg () = 0 in the 8V R-matrix (2.1), we get the 7V one

wi(u) 0 0 wi(u)
0  wu) ws(u) 0
0 we(w) ws(u) 0
0 0 0 w4(u)

The classification of solutions to the coloured 7V-type YBE was given recently in [26]. Due
to less symmetries, thR-matrices show a much more different properties from that of both
8V and 6V models. At this point, we expect that the corresponding RE reveals new features
as well.

First of all, let us study the symmetries of the RE as was done previously for other cases.
After removing the terms containings andvg in the system of equations (A), we find that
there still existX -transformation (2.4) undek-transformation (2.3) (note thag is absent!).

In [26], an additional relatioms () /we(1) = € is given, where: is a constant. When
¢ # 0, there have only triviaK _-matrices. The case of = 0 or ws(u) = wg(u) is further
classified into three different types: Baxter type, free-fermion type | and Il, which will be
discussed in the following sections.

R(u) = (4.2)

4.1. Baxter type

The parametrization of thR-matrix is as follows:

. _sin(u+h)
w1(u) = wa(u) = “sinh
sinu
wa (1) = wa(u) = S, 4.2)

ws(u) = ws(u) =1
w7(u) = sin(u + h) sinu.

Substituting (4.2) into system (A), we solve these equations case by case.

Case 4.1.1: diagonal solution.It can be seen from (A.1) thatif, (1) = 0 thenaz(u) = 0.
(Note thatug = 0 = vg in (A).) We obtain the diagonal solution:

K_(u) = <Sin(a0— u) 0 ) ' 4.3)

sin(a + u)
Case 4.1.2: skew-diagonal solutionLet a;(u) = 0, it requiresas(u) = 0 from (A.4). We
only need to consider two equations:

u7v3x3ys3 + 1vs(x2y3 — x3y2) =0

(4.4)
u3v7x3ys + usvi(x2ys — x3y2) = 0.

Solving equations (4.4), we have twb_-matrices,

(o) (27%)

wherep(u) = (A +cos 2)/2 anda is a free parameter.
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Case 4.1.3a3(u) = 0. One can get from case 4.1.1 that
ai(u) = p(u) sin(e — u) as(u) = p(u) Sin(o + u)
and find
az(u)/ p(u) = jusin(2u)
so theK _-matrix is
K-(w) = <V Sm(g - Ul;ifll(r:)fz':tzl)> (4.5)
whereu, v are parameters.

Case 4.1.4. Combining the results obtained above, one can easily write the gefieraltrix
as follows:
_(vsin(e —u) up(u)sin(2u)
K-(u) = < Sin(2u) vsinfw +u) |- (4.6)

In summary, we can regard (4.5) and (4.6) as the most general reflection matrices, because
others can be obtained by assigning special values to free parameters. Furthermore, comparing
(4.3) and (4.5), we see that in the case of the 7V typ&s) = 0 impliesaz(u) = 0, but the
reverse does not hold, this is different from the case of the 8V type.

4.2. Free-fermion type |

This kind of R-matrix reads

__sin(u +h)
wi(u) = sink

__sin(—u +h)
wa(u) = sinh

sin

w2() = w3(u) = = @.7)
ws(u) = we(u) =1

_ sin 2u
wr(u) = sink

If cosh = 0, orwi (1) = w4(u), we can make the similar calculation as for the Baxter type, as
both have the same symmetries. The result is almost the same as that given in (4.6) and (4.5)
but with p (1) = (A + cos ).

Whenwi(u) # wa(u), it forcesaz(u) = 0 from the second equation of (A.3). The RE
reduces to the following equations:

uoUs(X1y1 — Xaya) + usva(xay1 — x1y4) =0

(E.1)
U7V1X1Y1 — UTV1XaY4 + U4V7X4Y1 — U1V7X1Ya + (Us — U1)V2x2y2 =0
usvx1y2 + ugvsx4y2 + (Upv1 — ugv2)x2y1 =0
UsV2X4y2 + Uvsx1y2 + (Uv4 — u4v2)X2y4 = 0 E2)

(11v1 — U3V2)X1Y2 — USVSX4Y2 — UsV1X2Y1 + U UsX2y4 = O

(144 — U3V2)X4y2 — USVSX1Y2 — UsV4X2Y4 + UaUsX2y1 = 0.

Case 4.2.1.a,(u) = 0. The two equations of (E.1) are not compatible with each other due
to the symmetry between; (1) andw4(u) being broken. Therefore there exists no diagonal
solution for this type ofR-matrix.
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Case 4.2.2a:(u) = 0. One can deduce from (E.1) thaf(z) = 0 anda,(u) = 0. Thisis a
trivial case.

Case 4.2.3: General solution.From the second equation of (E.1) and (E.2), one can get the
same result as that in the Baxter type

ar(u) = sin(a — u) as(u) = sin(o + u) as(u) = pusin2u.
Substituting them into the second equation of (E.1), one finds+1. So, we have only one

solution

sin(e —u) £ 5sin(2u) ) (4.8)

K-(u) = ( 0 sin( + u)

which also shows thatz;(u) = 0 does not imply,(u) = 0.

4.3. Free-fermion type Il
In this case, the elements of tlRematrix take the following forms:

w1(1) = wa(u) = coshu
w2(u) = —w3(u) = sinhu 4.9)
ws(u) = ws(u) =1
w7(u) = u.
For the sake of brevity, we simply give the result. Note that the non-triviality requires
ai1(u) = Las(u). If ap(u) = aq(u), we get

K_(u) = (g " S(Th”) (4.10)

while if a;(u) = —as(u), we have

K_(u) = (g “"_‘)jh”> .

In addition, according to the discussion in section 2.4, the solutions remain invariant under
exchange ofy, <> w3 sinceaz(u) = 0.

(4.11)

5. Construction of boundary Hamiltonians

In this section, we will discuss the Hamiltonians for the systems described [Rrthatrices

and K-matrices obtained in the previous sections. The systems with such Hamiltonians
are open integrable quantum spin-chains. The 6V (Baxter type and free-fermion type) and
8V (Baxter type and free-fermion type I) are included in Sklyanin's formalism. While for

7V models, both Baxter type and free-fermion typ&-Imatrices have only regularityp-
symmetry, unitarity and crossing-unitarity symmetries. To assure that the transfer matrix
t(u) in these cases commutes to each other for different spectrum parameters, the RE for the
boundary matrix<. (1) is generalized from equation (1.3) to (1.5), so the corresporiiinig)-
matrices may be obtained by equation (1.6). The integrability of the systems constructed from
the above transfer matrix is guaranteed (see [12]). Considering that all of these cases have the
same definition of transfer matrix [8,12], we can construct their Hamiltonians in a unified way.
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If K_(0) « id, tr K+(0) # 0, the Hamiltonian for the open systems, which is obtained
from the first derivative of the transfer matrix, is defined as [8]

0
N-1
1 1 tro K+ (O)Hno

H=) Hjm+-K 10 K_ 0+ —-—""" (5.1)

; A tr K+(0)

where two-site Hamiltoniaft ; ;+1 is given by
d d

Hj = ijj+1aRj,j+l(“)|u=0 = $R<i,j+l(u)|u:OPj.j+l' (5.2)

All the Baxter-type models in two-component systems belong to this case. The boundary
Hamiltonian of the 6V- and 8V-Baxter type can be found in [13, 15, 18].

Case 5.1: Baxter-type 7V with crossing paramejee= h. From K_(u) in (4.6) and the
relation (1.6), we find that

K+(M) = K_(_u — h; —04, U4, V4, )\.+). (53)

According to equation (5.1), the Hamiltonian is

H= Tsnh ; H; j+1— A_of + B_oj +C_o; — Aoy + Bioy + Cioy (5.4)
where
Hjjm=02+ sirf h)a_;‘a_;ﬁrl +(2 — sin? h)ajival;‘;l +isin? h(a_;caijrl + a}’a]ﬁl)
+2 Cosha_fajﬁl (5.5)
Ay = %cotai By = (12?—;3? Cy= Ui‘s‘l—fmi (5.6)

However, if trK.(0) = 0, as pointed out in [13, 16], there will be no well-defined
Hamiltonian from the first derivative of the transfer matrix as in (5.1). But if

0
tro K+ (O)yHyo = A -id (57)

whereA is a constant, we can still derive the well-defined local Hamiltonian from the second
derivative of transfer matrix as follows:

t//(o) N-1 1 - 1/
H= = Hjm*t EK—l(O) K'_ (0)

AC+24) o
1 0 0 0 5

Y oC+ 2n) oK+ (O0Gno) + 21o(K's (O)Hno) +tro(K'+ o)} (5:8)
where

C =trK.(0) (5.9)

d? R Y
G+ = Pj,j+1—é”21(”) . (5.10)
u u=0

The following discussions show that all the boundary conditions corresponding to the free-
fermion type R-matrix belong to this case. We argue that it is a common property for all
free-fermion models.
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Case 5.2: free-fermion type-| 8V with crossing parameter I. Herel is the complete
elliptic integral of the first kind of moduluk. For general boundary condition described by
K_(u) in (2.17), we have

Ki(u) =K' (—u—1)

_ k2F.(u)snu + E4(u) cnudnu 2u+k"? snu cnu dnu (5.11)
- 2¢pu+k’? snu cnu dnu k"2F.(u)sru — E+(u) cnu dnu '
where
k((1 — €kG)ct + Hc,
Fe(u) = ¢ drfu + (@ = kG c2) cré u (5.12)
€eG —k
k((1— ekG)cy — k?Hcy
Ev(u) = cidrfu+ =€ G)CZ - D o, (5.13)
6 JR—
From equation (5.8), the Hamiltonian reads
N-1
H= Z Hjj+1+A_of +B_(0] +eo] )+ Asoy + Bi(oy +eoy) (5.14)
j=1
where
*k oo G-k,
Hjj= E(Uf toj)t 5 j%m Tt TU;U;VH (5.15)
and
A_=c;/cy B_=2u"/cy

As+ = k’>(HF+(0) — E+(0))/2(k"*F+(0) + H E+(0))
By = kK'2(G + k)™ / (kK? F+(0) + H E+(0)).
For the diagonak - matrix (2. 12) we have

H= Z Hin+ o (of — o) (5.16)
which has been dlscussed in [16] and is a special case of (5.14).

Case 5.3: symmetric free-fermion type-l 8VIf considering R-matrix (2.19) and the
corresponding( matrix (2.9), we get the following Hamiltonian:

1 k
Z(—a” ¥ ]+1) A_of+B_o) +C_o; — Aoy + Bioy + Cioy

J ]+l 2
(5.17)
where
cnoy dnoy Ccnos 5
— = 7= = ————/—¥(1—k°sn
2 sno4 T 2snay dna+( ®+)
A +1 A —1
Bi:Mi(i ) Ci:Mi(i )'
SNo+ SNo 4

Case 5.4: free-fermion-type 6V with= 7 /2. For the R-matrix in (3.6) and the general
K_-matrix (3.8), if setting

Kiw)=K' (—~u—7/2;7/2 — oy — h) (5.18)
we have

=S Z(o 0 +0;0},, +COSh(o] +07,y)) — COta_of — COta,oy. (5.19)
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Case 5.5: symmetric free-fermion-type 6\f consideringR () in (3.9) together with the
generalK_-matrix (3.7), we can set

Ki(u) = K' (—u — w/2; —ots, fhe, Vs) (5.20)
thus the Hamiltonian is

N-1
H= Z(O’;O’ﬁ_l + a}’a};l) — A_oi+B_o) +C_o] — Ao + Bioy +Cioy (5.21)
j=1
where
2 2v
Ay = cotay By = .Mi Ci=— * .
sino sina.

Case 5.6: free-fermion type-I 7V with crossing parametet 7/2. From theK _-matrix in
(4.8) and the relation (1.6), we get

Kitu)=K_ (—u—m/2; 00 —h+m/2, us) (5.22)

and the Hamiltonian is

N—1

z z X X P Y __x 4 +
E {COSh(aj +oj+1) +20j o ti(o; 0411 0; 0/} —A_of + B_oj
=1

~ 2sink

where
Mt
sinoy

M—, U+ = +1 Ay = COt(Xi/Z B, =

Case 5.7: symmetric free-fermion type-l1 7\Erom K _-matrix in (4.6) withp (1) = A+cos Z
and the relation (1.6), we have

Ki(u) = K_(—u — /2, —a+, [h+, Vi, As) (5.24)
and
N-1 | !
H= {o}‘oﬁl + E(o}‘o};l + O’}O’f+1)} —A_o{+B_o; +C_o]
j=1
_A+O‘]i, + B+O'; + C+O']; (525)
where
cot 1+
Ay =S g Qthous e
2 V4 SiNo4 Vi SNy

It should be pointed out that for the free-fermion type Il of both 7V and 8V models
which have no crossing-unitarity symmetry, how to prove their integrability and to obtain the
corresponding Hamiltonians in the case of open boundary condition is still an open problem.

6. Remarks and discussions

In this paper we found that symmetries play an important role in solving the reflection equation.
For any non-standar®-matrix which is obtained by applyin@-transformation to the standard
one, the corresponding reflection matrix can then be obtained by mal&ntransformation

to that for the standarft-matrix.
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Moreover, all solutions given above indicate that the number of free parameters appearing
in a K_-matrix is determined by the symmetries of tRematrix. R-matrices with different
forms but the same symmetries share the s&me@:) matrix. The free-fermion-typ&-matrix
with w1 (1) = w4(u) is just that in this case. It has the same fafm(«) as in the Baxter type.

Also we note that, different from that for 6V and 8V cases, the elemgs, az(u) of K_(u)
in the 7V case have no interchanging symmetry resulting from the symmetry betwéen
andwg(u) of the R-matrix being broken.

Itis also interesting to note that while constructing the Hamiltonian, all reflection matrices
for free-fermionR-matrices have the property of&r,.(0) = 0. We argue that it is a typical
property for all free-fermion models. So the local Hamiltonian for such systems are obtained
from the second derivative of the transfer matrix.

We are sure that our procedure to find solutions of the reflection equation can be applied
to high-spin models, though the calculation may be much more involved in this case. With
the solutions given in this paper, we can use the Bethe ansatz method to study the physical
properties of open spin-chains.

Furthermore, much attention has been recently directed to the Yang—Baxter equation with
dynamical parameters [27,28]. How to construct the corresponding reflection equation and
to seek its solution is an open problem. We wish to discuss some related problems using the
method and procedure given in this paper.
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